
Journal of Sound and <ibration (2002) 249(2), 263d305
doi:10.1006/jsvi.2001.3808, available online at http://www.idealibrary.com on
IMPROVEMENT OF THE SEMI-ANALYTICAL METHOD,
FOR DETERMINING THE GEOMETRICALLY

NON-LINEAR RESPONSE OF THIN STRAIGHT
STRUCTURES. PART I: APPLICATION TO

CLAMPED–CLAMPED AND SIMPLY
SUPPORTED}CLAMPED BEAMS

M. EL KADIRI AND R. BENAMAR

¸aboratoire d1Etudes et de Recherches en Simulation, Instrumentation et Mesures, E.G.¹.E.M.I.,
;niversite& Mohammed <, B.P. 765 Agdal, Rabat, Morocco, E-mail: rbenamar@hotmail.com

AND

R. G. WHITE

Department of Aeronautics and Astronautics, ;niversity of Southampton,
High,eld Southampton SO17 1BJ, England

(Received 17 October 2000, and in ,nal form 9 April 2001)

In a previous series of papers (Benamar 1990 Ph.D. ¹hesis, ;niversity of Southampton;
Benamar et al. 1991 Journal of Sound and <ibration 149, 179}195; 164, 399}424 [1}3])
a general model based on Hamilton's principle and spectral analysis has been developed for
non-linear free vibrations occurring at large displacement amplitudes of fully clamped
beams and rectangular homogeneous and composite plates. The results obtained with this
model corresponding to the "rst non-linear mode shape of a clamped}clamped (CC) beam
and to the "rst non-linear mode shape of a CC plate are in good agreement with those
obtained in previous experimental studies (Benamar et al. 1991 Journal of Sound and
<ibration 149, 179}195; 164, 399}424 [2, 3]). More recently, this model has been re-derived
(Azar et al. 1999 Journal of Sound and <ibration 224, 377}395; submitted [4, 5]) using
spectral analysis, Lagrange's equations and the harmonic balance method, and applied to
obtain the non-linear steady state forced periodic response of simply supported (SS), CC,
and simply supported}clamped (SSC) beams. The practical application of this approach to
engineering problems necessitates the use of appropriate software in each case or use of
published tables of data, obtained from numerical solution of the non-linear algebraic
system, corresponding to each problem. The present work was an attempt to develop a more
practical simple &&multi-mode theory'' based on the linearization of the non-linear algebraic
equations, written on the modal basis, in the neighbourhood of each resonance. The purpose
was to derive simple formulae, which are easy to use, for engineering purposes. In this paper,
two models are proposed. The "rst is concerned with displacement amplitudes of vibration
=

max
/H, obtained at the beam centre, up to about 0)7 times the beam thickness and the

second may be used for higher amplitudes=
max

/H up to about 1)5 times the beam thickness.
This new approach has been successfully used in the free vibration case to the "rst, second
and third non-linear modes shapes of CC beams and to the "rst non-linear mode shape of
a CSS beam. It has also been applied to obtain the non-linear steady state periodic forced
response of CC and CSS beams, excited harmonically with concentrated and distributed
forces.
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1. INTRODUCTION

The topic of non-linear vibration of beams is of continuing interest, due to their frequent use
as experimental test pieces [6}8] and because they constitute the simplest case of
a continuous system, since their motion is represented by one-dimensional partial
di!erential equations in space. Hence, they may be very useful for exploring and validating
new theoretical and numerical approaches in the "eld of non-linear structural dynamics. As
stated in reference [9], in spite of the considerable amount of research which has been
carried out in the last few decades on non-linear vibrations, linear theories remain widely
used in most of the practical applications, particularly in the "eld of modal testing. This may
be attributed, among other reasons, to the fact that the various attempts to describe
mathematically non-linear structural dynamic behaviour which have been developed and
presented in the literature in the last few decades still appear somewhat esoteric and di$cult
to deal with in practical situations. This is either because the theories are quite complex and
involve a variety of new concepts and predict a variety of new phenomena, unexpected
within the frame of linear theories or because the associated software is not available, or is
practically di$cult to use. This seems to be the reason why it is sometimes thought among
the scienti"c community working in the "eld of structural dynamics that non-linearity is
a matter which may be dealt with only by few initiated people, or which should be
considered, as stated in reference [9], as &&a collective term for what we cannot
accommodate or explain''. Therefore, while theoretical and experimental investigations
should be continued in order to discover and describe new fascinating aspects and to
develop new sophisticated analysis tools, appropriate to the non-linear world, much e!ort
has to be directed towards studying at least some of the most important among the already
known non-linear e!ects. These include the non-linear increase in resonant frequency and
stresses with the amplitude of vibration, or the signi"cant contributions of the higher modes
in the non-linear steady state periodic forced response, which should be made reasonably
easy to take into account in engineering applications, especially those related to structural
safety. Such an e!ort will have impact on the design of high-performance structures, aircraft
for example, but also will provide engineers, designers, and scientists with appropriate tools
ensuring more accuracy and e$ciency in current situations. The aim of this paper is the
presentation of a contribution to this e!ort. The non-linear free and forced response of CC
and CSS beams at large vibration amplitudes is taken as a "rst example illustrating this new
approach. The application to plates will be presented later.

Previous experimental and theoretical studies have shown that the fundamental and
higher mode shapes of beams are clearly dependent on the amplitude of vibration. High
values of increase of beam curvatures were noticed near the clamps of structures with
constrained ends, causing a highly non-linear increase in bending strain with increasing
de#ection, instead of the linear rate of increase predicted by the linear theory [7]. It has also
been shown that such a non-linear e!ect may have a signi"cant e!ect on the structural
fatigue life [8].

In a previous series of works [1}3, 10}13], a model based on Hamilton's principle and
spectral analysis has been developed for non-linear free vibrations of thin straight
structures, such as beams, homogeneous and composite plates, and shells. In this model, the
non-linear free vibration problem has been reduced to the solution of a set of non-linear
algebraic equations, which has been performed numerically using appropriate algorithms in
order to obtain a set of non-linear mode shapes for the structure considered in each case,
with the corresponding amplitude-dependent non-linear frequencies. Experimental
non-linear CC beam "rst mode shape data obtained in reference [7] for a non-dimensional
vibration displacement amplitude at the beam centre of = /H+2)04, and results
max
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obtained from solution of the set of non-linear algebraic equations corresponding to the
same non-dimensional amplitude have shown that the curve for the measured normalized
mode shape is well above the normalized theoretical linear mode shape but very close to
that of the normalized non-linear theoretical mode calculated using the non-linear model
mentioned above [2]. More recently, this model has been re-derived, using spectral analysis
and Lagrange's equations, and has been extended to the non-linear steady state periodic
forces response, leading to a set of coupled partial derivative equations which has been
considered as a multi-dimensional form of the very well-known Du$ng equation. Assuming
harmonic motion and applying the harmonic balance method, the above set has been
transformed into a set of non-linear algebraic equations with a rightside term
corresponding to the generalized forces depending on the type of excitation force
(concentrated or distributed) and its domain of application. This approach has been applied
to determine numerically a multi-mode steady state periodic forced response of SS, CC, and
SSC beams [4, 5], and the validity of the results obtained has been established via a careful
comparison with other approaches and with experimental measurements [1, 4, 5, 13]. The
main features of the approach presented above are from reference [1].

1) It is not subject to the practical limitation of weak non-linearity in its formulation, as
was the case for some models for non-linear vibration based on the perturbation
procedure developed previously.s

2) Its formulation is quite simple and does not contain any incremental procedure as in
some "nite element approaches.

3) Periodic solutions can be obtained directly with any desired accuracy as solutions of
the set of non-linear algebraic equations.

4) Once the most signi"cant contributing functions are known, engineering applications
can be made easily using data tables or rapid computer programs using only a small
number of appropriate functions.

5) Once the contributions of the functions are calculated, the resulting strains and
stresses can be obtained directly, using the analytical expressions for the derivatives of
the basic functions.

6) Also, this method makes the non-linear e!ects appear not only via the amplitude
frequency dependence of the displacement amplitude, but also via the dependence of
the de#ection shape on the amplitude of vibration. This allows quantitative estimate of
the non-linear stresses in sensible regions of the structure to be obtained, which is of
crucial importance in the fatigue life prediction of structures working in a severe
environment.

However, although the works mentioned above made it quite easy to calculate the
non-linear mode shapes, the non-linear frequencies and the non-linear bending stress
patterns of the structures considered, via the numerical solution, of a small set of non-linear
algebraic equations (5 for beams [2], 8 for fully clamped plates [3], 11 for shells [12], 17 for
CCCSS plates [15], 17 for fully clamped composite plates [16]), it was thought that
investigations could be directed towards a further step in the development of a sort of
non-linear modal analysis theory. This should allow explicit and easy calculation of the
non-linear free and steady state periodic forced response of thin straight structures, in terms
of their classical mass and rigidity matrices, the non-linear geometrical rigidity tensor
introduced in the above model, and the amplitude of vibration. It was also hoped that such
an attempt could provide users with simple formulae, ready to use for engineering purposes,
sThis limitation has been overcome to some extent in the asymptotic numerical model presented in reference
[14].
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which would be, in their corresponding intervals of validity, much more practical than the
published tables of data, obtained from the numerical solution of a non-linear algebraic
system, which necessitates the use of appropriate software in each case. Also, these new
formulae could be interesting from the analytical point of view, since they may be
implemented in further theoretical works, investigating other non-linear e!ects, such as the
non-linear response harmonic distortion spatial distribution, the internal resonance, fatigue
life predicting models, etc.

The purpose of this paper is the presentation of the results of this investigation and
discussion of the range of validity of the simple formulae proposed for both the non-linear
free and steady state periodic forced response of CC and CSS beams. The plate case will be
presented later.

In the next section, a review of the theory mentioned above and some numerical results
obtained by solving the non-linear algebraic equations are presented. The third section is
concerned with the new approach for free vibration analysis. The theory and numerical
results for the "rst three non-linear modes of CC beams and the "rst non-linear mode of
SSC beams are presented. In the fourth section, the theoretical formulation for the forced
case is derived and applied for a harmonic concentrated excitation force. In each section, the
results obtained by the new approach are discussed, to determine accurately the limit of
validity of each formulation, via comparison with previous known results.

2. REVIEW OF THE BASIC THEORY FOR DETERMINATION OF THE NON-LINEAR
MODE SHAPES AND RESONANCE FREQUENCIES OF BEAMS AT LARGE VIBRATION

AMPLITUDES

Since the objective of the present paper is to present an improvement of the theoretical
model for non-linear free and forced vibrations developed in references [1, 2, 4, 5], one
starts by presenting in this section a brief review of the theory, in order to make to easy for
the reader to understand the notation and the analytical developments presented in the next
sections.

Consider transverse vibrations of a beam having the geometrical and material
characteristics (S, ¸, H, I, E, o ) de"ned in the notation list. The total beam strain energy can
be written as the sum of the strain energy due to bending denoted as<

b
, plus the axial strain

energy due to the axial load induced by large de#ection <
a
.

<
b
, <

a
and the kinetic energy ¹ are given by [1, 2]
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in which= is the beam transverse displacement. Using a generalized parameterization and
the usual summation convention used in reference [2], the transverse displacement can be
written as

=(x, t)"q
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Substituting= in the expressions for <
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The dynamic behaviour of the structure may be obtained by Lagrange's equations for
a conservative system, which leads to

(L/Lt) (L¹/LqR
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)#L¹/Lq

r
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"0, r"1,2 , n. (11)

Replacing in this equation ¹ and <"(<
a
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b
) by their expressions given above, leads to

the following set of coupled Du$ng equations:
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"0, r"1,2, n, (12)

which can be written in matrix form as

[M] MqK N#[K]MqN#2[B(MqN)]MqN"M0N, (13)

where [M], [K], [B] and MqN are respectively the mass matrix, linear rigidity matrix,
non-linear rigidity matrix depending on MqN and the column vector of generalized
parameters MqNT"[q

1
q
2
,2, q

n
].

Now assuming harmonic motion

q
i
(t)"a

i
cos (ut), (14)

substituting equation (14) into equation (13) and applying the harmonic balance method
leads to

2([K]!u2[M])MAN#3[B (A)]MAN"M0N, (15)

in which MAN is the column vector of the basic functions contribution coe$cients

MANT"Ma
1
a
2
,2, a

n
N.

To obtain non-dimensional parameters, one puts, as in reference [1],

w
i
(x)"Hw*

i
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i
(x*), u2/u*2"EI/oS¸4 , (16, 17)
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Substituting these equations into equation (15) leads to
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2
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which may be written also, using tensor notation, as
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ijkr
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Equation (22) is identical to that obtained in reference [2] for the non-linear free vibrations
of beams and plates using Hamilton's principle and integration over the range (0, 2n/u).
These equations are a set of non-linear algebraic equations, involving the parameters m*

ij
,

k*
ij

and b*
ijkl

which have been computed numerically by a routine called PREP. In order to
obtain the numerical solution for the non-linear problem in the neighbourhood of a given
mode, the contribution of this mode is chosen and those of other modes are calculated
numerically using the Harwell library routine NS01A. For the "rst mode, the procedure
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consisted of "xing a
1

and calculating the higher mode contributions from the system
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in which u*2 is obtained from the principle of conservation of energy as
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Numerical data corresponding to the "rst three CC beam mode shapes have been computed
and tabulated ref. [2] for a wide range of vibration amplitudes.

3. THE NEW APPROACH FOR LARGE-AMPLITUDE FREE VIBRATIONS OF BEAMS

3.1. GENERAL FORMULATION

The purpose of this paper is to replace the numerical solution of the set of non-linear
algebraic equations (23), necessary to obtain the beam non-linear mode shapes and
resonance frequencies at large vibration amplitudes, by two equivalent simple formulations,
ready to use for engineering purposes. Then, comparison of the new results with the
previous ones is made in order to determine exactly the limit of validity of each formulation.
Analytical details are given in this section for the "rst three non-linear mode shapes of a CC
beam. Results for the case of a CSS beam, obtained similarly are presented in section 3.2.3.

Consider the large vibration displacements of a beam in the neighbourhood of its "rst
resonant frequency. Following the basic functions choice adopted in reference [2], to obtain
the values of the linear rigidity matrix k*

ij
and non-linear geometrical rigidity tensor b*

ijkl
of

the "rst and third non-linear mode shapes of a CC beam, the "rst six normalized symmetric
CC beam functions w*

1
, w*

3
,2, w*

11
have been used (see Appendix A). The functions

w*
i

have been normalized in such a manner that the obtained mass matrix equals the
identity matrix. For the second non-linear mode shape, the "rst six antisymmetric CC beam
functions w*

2
, w*

4
,2, w*

12
have been used to determine the modal parameters k*

ij
and b*

ijkl
.

In the case of the "rst non-linear mode shape of a CSS beam, the "rst six normalized CSS
beam functions denoted /*

1
, /*

2
,2 , /*

6
, have been used to calculate the modal parameters,

which are given in Appendix A.
To illustrate the main idea behind the present approach, data obtained via the solution of

the non-linear algebraic system (23) previously published in reference [2] are presented here
in Table 1(a). It can be seen in this table, corresponding to the CC beam "rst non-linear
mode shape, that the contribution a

1
of the "rst basic function, which is the "rst CC beam

linear mode shape, remains predominant for the whole range of vibration amplitudes
considered, compared to the contributions of the other functions. So the contribution
coe$cient vector MAN de"ned in reference [2] by MANT"[a

1
, a

3
,2 , a

11
] can be written as

MANT"[a
1
e
3
,2, e

11
] in which e

i
, representing the ith basic function contribution, may be

considered as small, compared to a
1
, for i"3, 5,2 , 11. Since the non-linearity parameters

b
ijkl

de"ned in equation (10) are of the same order of magnitude (see Appendix A), due to the
above observation, some terms may be neglected in the non-linear expression a

i
a
j
a
k
b
ijkr

in
equation (23), which leads to two simple formulations, called in the remainder of this paper
the "rst and the second formulation.

3.1.1. ¹he ,rst formulation

The "rst formulation is based on an approximation which consists in neglecting in the
expression a

i
a
j
a
k
b
ijkr

of equation (23) both "rst and second order terms with respect to e
i
,
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i.e., terms of the type a2
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in which the repeated index i is summed over the range (1, 3,2 , 11).
Since the use of linear beam mode shapes as basic functions leads to diagonal mass and

rigidity matrices, equation (25) can be written as
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in which no summation is involved. The above system permits one to obtain explicitly the
modal contributions e

3
, e

5
,2 , e
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of the second and higher basic functions corresponding

to a given value of the assigned "rst basic function contribution a
1

as follows:
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where the e
i
's, for r'1, depend on the classical modal parameters m

rr
, k

rr
, the non-linear

modal parameters b
111r

, the assigned "rst function contribution a
1
, and the non-linear

frequency parameter u*. On the other hand, it is shown in reference [2] that the
single-mode approach gives an accurate estimate of the non-linear frequency parameter u*
for displacement amplitudes up to twice the beam thickness, so that u*2 may be well
estimated, with a percentage error below 0)84% from equation (24) by
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Substituting equation (28) into equation (27) leads to
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As the normalization procedure adopted in reference [2, equation (43)] leads to a mass
matrix identical to the identity matrix, m*
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and m*
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are equal to 1 and equation (28) may be

simpli"ed to
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Expression (30) is an explicit simple formula, allowing calculation of the higher mode
contributions to the "rst non-linear beam mode shape, as functions of the assigned "rst
mode contribution a

1
and of the known parameters k
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, m
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and b
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(given in Appendix A),

which de"nes the "rst non-linear amplitude-dependent beam mode shape w*
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1
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of the "rst function contribution as a series involving the beam
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in which the predominant term, proportional to the "rst linear mode shape, is a
1
w*

1
(x), and

other terms, proportional to the higher modes w*
3
(x) ,2 , w*

11
(x), are the corrections due to

the non-linearity.
The second amplitude-dependent beam non-linear mode shape w*
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The third non-linear amplitude-dependent beam mode shape w*
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of the third function contribution may be written as
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To obtain, more generally, the beam rth non-linear mode shape, the contributions e
i
of the

ith basic function can be obtained from
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The range of validity of these expressions is quite interesting. It will be discussed in the next
section for the various modes and beams considered.

3.1.2. Second formulation

As will be shown in section 3.2, the explicit formulae established for the various
non-linear beam mode shapes considered via the "rst formulation developed in the above
subsection yield accurate results for quite large ranges of vibration amplitudes. For higher
amplitudes, a second formulation has been considered in which only second order terms of
the type e

i
e
j
a
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b
ij1r

are neglected when considering the "rst non-linear mode, in equation
(23), rewritten here for clarity as
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After substituting and rearranging, equation (35) can be written in matrix form as
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in which [K*
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] are reduced rigidity and mass matrices associated

with the "rst non-linear mode, obtained by varying i and j in the set (3, 5,2 , 11), [a*
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, whose general term a*
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can be obtained very easily by solving the linear system (37) of "ve equations

and "ve unknowns.
To obtain the second non-linear beam mode shape, a linear system similar to (37) is

written as

([K*
RII

]!u*2[M*
RII

])MA
RII

N#3
2
[a*

II
]MA

RII
N"M!3

2
a3
2
b*
i222

N, (38)

in which the general term of the matrix [a*
II
] is equal to a2

2
b*
ij22

, [K*
RII

] and [M*
RII

] are
reduced rigidity and mass matrices corresponding to the second mode and M!3

2
a3
2
b*
i222

N is
a column vector representing the right side of the linear system (38) in which the reduced
unknown vector is MA

RII
NT"[e

2
, e

4
,2, e

12
]. The modal contributions can also be

obtained similarly by solving a reduced linear system of "ve equations and "ve unknowns.
Higher non-linear mode shapes may be obtained in a similar manner, using appropriate
reduced matrices in each case.

3.1.3. Conclusions

It appears from the above two subsections that the basic function contributions to the
amplitude-dependent non-linear beam mode shapes may be calculated via the "rst
formulation using simple explicit expressions involving the beam generalized parameters
m

ij
, k

ij
and b

ijkl
. As will be shown in section 3.2 in the light of the numerical results obtained,

these simple expressions yield accurate values for the basic function contributions, for
vibration amplitudes, up to about 0)7 times the beam thickness. For higher amplitudes,
more accurate results may be obtained, based on the second formulation, via a solution of
a reduced linear system of "ve equations and "ve unknowns for vibration amplitudes, up to
about 1)5 times the beam thickness.

3.2. PRESENTATION AND DISCUSSION OF THE NUMERICAL RESULTS OBTAINED BY THE NEW

APPROACH CORRESPONDING TO THE FIRST THREE NON-LINEAR MODE SHAPES OF A CC

BEAM

3.2.1. First formulation results

Replacing in equation (31) the CC modal parameters by their numerical values given in
Appendix A leads to the following expression of the "rst non-linear CC beam mode shape:

w*
n11

(x, a
1
)"a

1
w*
1
(x)#

!1077)21a3
1

2((500)56#453)87a2
1
)!14617)63)

w*
3
(x)

#

!842)427a3
1

2((500)56#453)87a2
1
)!89135)40)

w*
5
(x)

#

!675)27a3
1

2((500)56#453)87a2
1
)!308208)45)

w*
7
(x)
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#

!560)142a3
1

2((500)56#453)87a2
1
)!793406)25)

w*
9
(x)

#

!470)475a3
1

2((500)56#453)87a2
1
)!1691832)35)

w*
11

(x). (39)

In Table 1(b), numerical results for modal contributions to the fundamental non-linear
mode shape of a CC beam, calculated here via the "rst formulation, i.e., equation (39), are
summarized. The results given correspond to the values of e

3
, e

5
,2 , e

11
obtained for some

assigned values of a
1

varying from 0)05 to 0)8 which correspond to a maximum
non-dimensional vibration amplitude at the beam centre varying from 0)0794 to 1)225. For
each solution, the corresponding values of u*

n1
/u*

1
and the curvature calculated at x*"0

are also given. Comparison between Tables 1(b) and (a) taken from reference [2] where the
modal contributions have been calculated via the solution of the complete non-linear
algebraic system, shows that the higher basic function contributions to the "rst non-linear
beam mode shape obtained from the explicit expressions based on the "rst formulation are
very close to those calculated via the solution of a non-linear algebraic system for "nite
amplitudes of vibration up to a displacement equal to the beam thickness (which
corresponds to a

1
:0)67). For higher values of the vibration amplitude, slight di!erences

start to appear and increase with the amplitude of vibration. This may be seen in
Figures (1)}(5), in which contributions obtained from the "rst and second formulations are
plotted versus the maximum non-dimensional beam vibration amplitude=

max
/H obtained

at the beam centre and compared with the exact numerical solution. To have an accurate
conclusion concerning the limit of validity of the "rst explicit formulation in engineering
applications, a criterion based on the e!ect of the di!erences appearing in the estimated
contributions to physical quantities, such as the non-linear frequency and the curvature at
the beam ends has been adopted. It was found, as may be seen in Tables 1(a}c), that for
amplitudes up to the beam thickness, the error induced by the "rst formulation does not
exceed 0)1% for the non-linear frequency and 3% for the curvature (and hence the
non-linear bending stress) at the beam clamps. This e!ect is shown in Figures (6) and (7), in
Figure 1. Comparison between the values of the modal contribution e
3

of the "rst non-linear mode of the free
vibration of a CC beam obtained by (1) non-linear algebraic equations; (2) "rst formulation and (3) second
formulation.



Figure 2. Comparison between the values of the modal contribution e
5

of the "rst non-linear mode of the free
vibration of a CC beam. Key as for Figure 1.

Figure 3. Comparison between the values of the modal contribution e
7

of the "rst non-linear mode of the free
vibration of a CC beam. Key as for Figure 1.
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which the curvature and the non-linear frequency, obtained via the three approaches, are
plotted for a wide range of vibration amplitudes.

In Tables 2 and 3, numerical results for modal contribution to the second and third CC
beam non-linear mode shapes calculated via the di!erent formulations are summarized.
Comparison of these tables leads to the same conclusion as that given above for the
fundamental non-linear mode*the higher basic functions contributions to the second and
third non-linear mode shapes obtained from the explicit expressions based on the "rst
formulation are very close to those calculated via the solution of the non-linear algebraic
system for "nite amplitudes of vibration up to 0)8 times the beam thickness which
corresponds to a

1
:0)5. In Figures 8}11, the curvatures and the non-linear resonant

frequency associated with the second and the third non-linear mode calculated here using
the "rst formulation are plotted versus the maximum non-dimensional beam vibration
amplitude obtained in the neighbourhood of x*"0)29 and 0)20 respectively. It is noticable



Figure 4. Comparison between the values of the modal contribution e
9

of the "rst non-linear mode of the free
vibration of a CC beam. Key as for Figure 1.

Figure 5. Comparison between the values of the modal contribution e
11

of the "rst non-linear mode of the free
vibration of a CC beam. Key as for Figure 1.
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that for values of vibration amplitude below 0)8 times the beam thickness, the di!erence
between the present solution and that obtained from the exact solution of the non-linear
algebraic system does not exceed 1)1% for the non-linear resonance frequency for the
second non-linear mode and 1)4% for the third mode, and does not exceed 1)1% for the
curvature at the beam end associated with the second mode, and 2.5% for the curvature
associated with the third mode.

3.2.1.1. E+ect of various truncations of the series de,ned in equation (39). As may be seen
from the table of contributions of the higher modes to the "rst non-linear mode shape, the
contribution of a basic function n decreases generally when n increases, and the
contributions of the highest functions are very small for small amplitudes, but increase with
amplitude. It may be concluded from these two observations that many increasing ranges of
vibration amplitude may be considered to correspond to successive truncations of the series
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(39) de"ning the non-linear mode shape. To de"ne these ranges, one considers now the e!ect
of various possible truncations of the series (39) on the estimated non-linear frequency and
bending moments at the beam end. In Table 15 of reference [5], the values of the bending
moments calculated at x*"0, for the fundamental mode shape of a CC beam and for
various truncations of the series are summarized. Comparison of the percentage of error
induced on the bending moments by the di!erent models permits one to conclude that the
fundamental mode shape can be approximated with a percentage error which does not
exceed 2%, using the 2-D model, for amplitudes up to 0)7 times the beam thickness, so that
the fundamental non-linear mode shape may be given, for this range of amplitudes of
vibration, by the following expression involving only two basic functions, namely

=*
n11

(x, a
1
)"a

1
w*
1
(x)#

!1077)21a3
1

2((500)56#453)87a2
1
)!14617)63)

w*
3
(x).

For amplitudes of vibration up to the beam thickness, the 3-D model may be used leading
to the expression involving three basic functions

=*
n11

(x, a
1
)"a

1
w*
1
(x)#

!1077)21a3
1

2((500)56#453)87a2
1
)!14617)63)

w*
3
(x)

#

!842)427a3
1

2((500)56#453)87a2
1
)!89135)40)

w*
5
(x).

In Table 4, a summary is given of the errors induced in the frequency and the moment
calculated at x*"0 by the di!erent models for chosen values of the maximum
non-dimensional vibration amplitude in each case.

3.2.2. Second formulation results

In Tables 1(c), 2(c) and 3(c), the modal contributions to the fundamental, the second and
the third non-linear mode shapes of a CC beam, calculated via the second formulation are
summarized. It is noticable from comparison of these tables with those obtained via the
solution of the non-linear algebraic system, i.e., Tables 1(a}c), and from "gures 7}11, that
the corresponding intervals of validity largely exceed those obtained from the "rst
formulation and can reach vibration amplitudes up to 2)8 times the beam thickness for the
"rst mode, 3)2 and 2)3 times the beam thickness for the second and third modes respectively.

It is also noticable that for values of vibration amplitude below 1)5 times the beam
thickness, the di!erence between the exact solution and that obtained by the second
formulation does not exceed 0)1% for the non-linear resonance frequency of the "rst
non-linear mode, 0)82% for the second non-linear mode and 3)2% for the third non-linear
mode, and does not exceed 1)6% for the curvature at the beam end associated with the "rst
non-linear mode, 2)25% for the second mode and 0)3% for the curvature associated with
the third mode.

3.2.3. Presentation and discussion of the numerical results corresponding to the ,rst non-linear
mode shape of a CSS beam

In Tables 5(a}c), the modal contributions to the "rst non-linear mode shape of a CSS
beam obtained via the solution of the non-linear algebraic system (23) are presented. It can
be seen in this table that the contribution a

1
of the "rst basic function, which is the "rst CSS

beam linear mode shape, remains predominant, so that the contribution coe$cient vector



TABLE 1

(a) Free vibration in the ,rst non-linear mode of a CC beam obtained numerically from solution of the non-linear algebraic
equations, published in reference [2]

u*n1/u1 d2w/dx2(0) a
1

a
3

a
5

a
7

a
9

a
11

1)001 0)223911E#01 0)5000E!01 0)4765E!05 0)5944E!06 0)1374E!06 0)4423E!07 0)1749E!07

1)148 0)296695E#02 0)6000E#00 0)7213E!02 0)9921E!03 0)2382E!03 0)7824E!04 0)3131E!04

1)196 0)356782E#02 0)7000E#00 0)1097E!01 0)1556E!02 0)3783E!03 0)1250E!03 0)5025E!04

1)247 0)421030E#02 0)8000E#00 0)1564E!01 0)2289E!02 0)5642E!03 0)1879E!03 0)7581E!04

1)550 0)809348E#02 0)1300E#01 0)5144E!01 0)8920E!02 0)2378E!02 0)8263E!03 0)3422E!03

1)617 0)900628E#02 0)1400E#01 0)6073E!01 0)1088E!01 0)2950E!02 0)1035E!02 0)4310E!03

1)684 0)996355E#02 0)1500E#01 0)7058E!01 0)1306E!01 0)3599E!02 0)1275E!02 0)5341E!03
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(b) Frequency ratios of free vibration in the ,rst non-linear mode, curvatures and modal participation of a CC beam at various amplitudes obtained
by the present model (,rst formulation)

% error
a
1
s e

3
t e

5
e
7

e
9

e
11

d2w/dx2(0)

0)100113E#01 0)223911E#01 0)5000E!01 0)477043E!05 0)594585E!06 0)137366E!06 0)4421847E!07 0)174043E!07 0)0

0)114787E#01 0)299574E#02 0)6000E#00 0)833921E!02 0)1029328E!02 0)2374942E!03 0)7642516E!04 0)3007762E!04 0)0

0)119525E#01 0)362745E#02 0)7000E#00 0)1329862E!01 0)1635627E!02 0)3772044E!03 0)1213693E!03 0)4776382E!04 1)7

0)124697E#01 0)432141E#02 0)8000E#00 0)1994879E!01 0)2443401E!02 0)5631821E!03 0)181185E!03 0)7130047E!04 2.8

(c) Frequency ratios of free vibration in the ,rst non-linear mode, curvatures and modal participation of a CC beam at various amplitudes obtained
by the present model (second formulation)

0)100113E#01 0)223912E#01 0)5000E!01 0)476706E!05 0)594929E!06 0)1375940E!06 0)4434244E!07 0)2043709E!07 0)0001

0)114798E#01 0)297389E#02 0)6000E#00 0)734947E!02 0)101316E!02 0)2436585E!03 0)8013607E!04 0)3662420E!04 0)26

0)154979E#01 0)822306E#02 0)1300E#01 0)536749E!01 0)944098E!02 0)2536978E!02 0)8859714E!03 0)4019288E!03 2)0

0)161607E#01 0)917103E#02 0)1400E#01 0)634644E!01 0)115561E!01 0)3161695E!02 0)1115430E!02 0)5063787E!03 2)23

sa
1
: assigned value of the "rst CC beam function.

te
i
: contribution of the ith CC beam function to the "rst non-linear mode calculated via the "rst approximation.
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Figure 6. Comparison between values of curvature at x*"0 of the "rst non-linear mode shape of a CC beam.
Key as for Figure 1.

Figure 7. Comparison of frequencies for "rst non-linear CC beam mode shape. Key as for Figure 1.
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MAN de"ned in reference [2] by MANT"[a
1
, a

2
,2, a

6
] can be written as

MANT"[a
1
, e

2
,2, e

6
] in which e

i
, representing the ith basic function contribution, may be

considered as small, compared to a
1
, for i"2, 3,2, 6. This shows that the two

formulations, developed in sections 3.1.1 and 3.1.2, in the case of CC beams can be rederived
in the case of CSS beams leading to two similar results. Hence, using the "rst formulation,
the "rst non-linear amplitude-dependent CSS beam mode shape U*

n11
(x, a

1
), for a given

assigned value a
1

of the "rst function contribution, can be written as

U*
n11

(x, a
1
)"a

1
/*

1
(x)#

3a3
1
b*
2111

2((k*
11
#a2

1
b*
1111

)!k*
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)
/*
2
(x)

#

3a3
1
b*
3111

2((k*
11
#a2

1
b*
1111

)!k*
33

)
/*

3
(x)#2#

3a3
1
b*
6111

2((k*
11
#a2

1
b*
1111

)!k*
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)
/*
6
(x).

(40)
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Replacing in equation (40) the CSS modal parameters by their numerical values given in
Appendix A leads to the following expression of the "rst non-linear mode shape of a CSS
beam:

U*
n11

(x, a
1
)"a

1
/*
1
(x)#

!443)3652a3
1

2((237)72#397)4403a2
1
)!2496)48)

/*
2
(x)

#

!392)6061a3
1

2((237)72#397)4403a2
1
)!10867)58)

/*
3
(x)#

!339)7752a3
1

2((237)72#397)4403a2
1
)!31780)09)

/*
4
(x)

#

!295)2315a3
1

2((237)72#397)4403a2
1
)!74000)84)

/*
5
(x)#

!260)0109a3
1

2((237)72#397)4403a2
1
)!148634)47)

/*
6
(x).

(41)

In Table 5(b), numerical results for modal contributions to the fundamental non-linear
mode shape of a CSS beam, calculated via the "rst formulation are summarized. The results
given correspond to the values of e

2
, e

3
,2, e

6
obtained for assigned values of a

1
varying

from 0)05}1)5. For each solution, the corresponding values of u*
n1

/u*
1
, the curvature

calculated at x*"0, and the maximum amplitude of vibration w
max

/R are also given.
Comparison between Tables 5(b) and (a) shows that the higher mode contributions to the
"rst non-linear beam mode shape obtained from the explicit expressions based on the "rst
formulation are very close to those calculated via the solution of a non-linear algebraic
system for "nite amplitudes of vibration up to 0)8 times the beam thickness (which
corresponds to a

1
:0)52). For higher values of the vibration amplitude, slight di!erences

start to appear and increase with increase of the amplitude of vibration, as may be seen in
Figures 12 and 13, in which contributions obtained from the "rst and second formulation
are plotted versus the maximum beam vibration amplitude w

max
obtained in the

neighbourhood of x*"0)58, and compared with the exact numerical solution. It was found,
as may be seen from Figures 12 and 13, that for amplitudes up to 0)8 times the beam
thickness, the error induced by the "rst formulation does not exceed 0)35% for the
non-linear frequency and 1)3% for the curvature (and hence the non-linear bending stress)
at the beam clamps. The error induced in the second formulation for amplitudes up to 1)5
times the beam thickness does not exceed 0)33% for the non-linear frequency and 0)83% for
the curvature at the clamped end of the beam.

4. A NEW SIMPLIFIED APPROACH TO THE NON-LINEAR STEADY STATE FORCED
PERIODIC RESPONSE OF BEAMS AT LARGE VIBRATION AMPLITUDES

4.1. REVIEW OF THE THEORY AND THE SINGLE-MODE CASE

The model presented in section 2 has been recently extended to the case of non-linear
forced vibration of beams [4, 5]. The authors assume that the structure is excited by the
force F(x, t) distributed over the range SM (SM is the length of the beam or a part of it); the
physical force F(x, t) excites the modes of the structure via a set of generalized forces F

i
(t)

which depend on the expression for F, the excitation point for concentrated forces, the
excitation length for distributed forces, and the mode considered. The generalized forces
F
i
(t) are given by

F
i
(t)"P

SM
F(x, t)w

i
(x) dx, (42)



TABLE 2

(a) Free vibration in the second non-linear mode of a CC beam obtained numerically from solution of the non-linear algebraic
equations, published in reference [2]

u*n1/u1 d2w/dx2(0) a
2

a
4

a
6

a
8

a
10

a
12

1)002 0)617601E#01 0)5000E!01 0)1225E!04 0)2313E!05 0)6742E!06 0)2509E!06 0)1129E!06

1)072 0)388084E#02 0)3000E#00 0)2466E!02 0)4873E!03 0)1450E!03 0)5456E!04 0)2472E!04

1)124 0)534804E#02 0)4000E#00 0)5547E!02 0)1133E!02 0)3420E!03 0)1298E!03 0)5914E!04

1)187 0)694579E#02 0)5000E#00 0)1018E!01 0)2159E!02 0)6636E!03 0)2544E!03 0)1167E!03

1)421 0)126428E#03 0)8000E#00 0)3325E!01 0)7998E!02 0)2621E!02 0)1044E!02 0)4904E!03

1)510 0)148572E#03 0)9000E#01 0)4361E!01 0)1093E!01 0)3666E!02 0)1480E!02 0)7022E!03

2)101 0)312271E#03 0)1500E#01 1)2229E#00 0)3774E!01 0)1444E!01 0)6363E!02 0)3208E!02
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(b) Frequency ratios of free vibration in the second non-linear mode shape, curvatures and modal participation of a CC beam at various amplitudes
obtained by the present model (,rst formulation)

% error
a
2
s e

4
t e

6
t e

8
t e

10
t e

12
t d2w/dx2(0)

0)100208E#01 0)617602E#01 0)5000E!01 0)1228236E!04 0)231435E!05 0)674261E!06 0)2507434E!06 0)132415E!06 0)00025

0)107197E#01 0)389105E#02 0)3000E#00 0)2694511E!02 0)501543E!03 0)145801E!03 0)5418612E!04 0)286085E!04 0)28

0)112398E#01 0)538937E#02 0)4000E#00 0)6467973E!02 0)119197E!02 0)345908E!03 0)1284896E!03 0)678257E!04 0)85

0)118671E#01 0)706620E#02 0)5000E#00 0)1284211E!01 0)233598E!02 0)676371E!03 0)2510783E!03 0)132504E!03 1)9

(c) Frequency ratios of free vibration in the second non-linear mode, curvatures and modal participation of a CC beam at various amplitudes
obtained by the present model (second formulation)

0)100208E#01 0)617595E#01 0)5000E!01 0)1224535E!04 0)231003E!05 0)6731965E!06 0)2503251E!06 0)1125662E!06 0)0001

0)142140E#01 0)127028E#03 0)8000E#00 0)3406493E!01 0)823521E!02 0)2708356E!02 0)1080743E!02 0)5519784E!03 1)0

0)151026E#01 0)149511E#03 0)9000E#00 0)4476218E!01 0)112917E!01 0)3804838E!02 0)1541429E!02 0)8046572E!03 1)33

0)210076E#01 0)316849E#03 0)1500E#01 0)126810E#00 0)393506E!01 0)1521860E!01 0)6771930E!02 0)3967705E!02 3)42

sa
2
: assigned value of the second CC beam function.

te
i
: contribution of the ith CC beam function to the second non-linear mode calculated via the "rst approximation.
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TABLE 3

(a) Free vibration in the third non-linear mode of a CC beam obtained numerically from solution of the non-linear algebraic
equations, published in reference [2]

u*n1/u1 d2w/dx2(0) a
1

a
3

a
5

a
7

a
9

a
11

1)003 0)121085E#02 !0)3820E!04 0)5000E!01 0)1812E!04 0)4350E!05 0)1489E!05 0)6165E!06

1)039 0)494944E#02 !0)2309E!02 0)2000E#00 0)1109E!02 0)2732E!03 0)9463E!04 0)3945E!04

1)086 0)762373E#02 !0)7260E!02 0)3000E#00 0)3539E!02 0)8996E!03 0)3163E!03 0)1330E!03

1)149 0)105097E#03 !0)1572E!01 0)4000E#00 0)7798E!02 0)2062E!02 0)7393E!03 0)3145E!03

1)403 0)206864E#03 !0)6030E!01 0)7000E#00 0)3160E!02 0)9561E!02 0)3687E!02 0)1642E!02

1)504 0)245906E#03 !0)7994E!01 0)8000E#01 0)4255E!01 0)1344E!01 0)5321E!02 0)2410E!02

2)316 0)572554E#03 !0)2449E#00 0)1500E#01 0)1388E#00 0)5441E!01 0)2511E!01 0)1273E!01
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(b) Frequency ratios of free vibration in the ,rst non-linear mode, curvatures and modal participation of a CC beam at various amplitudes obtained
by the present model (,rst formulation)

% error
e
1
s a

3
t e

5
s e

7
s e

9
s e

11
s d2w/dx2(0)

0)100250E#01 0)121085E#02 !0)381498E!04 0)5000E!01 0)182060E!04 0)435693E!05 0)148982E!05 0)612790E!06 0)0005

0)103929E#01 0)495555E#02 !0)226586E!02 0)2000E#00 0)119162E!02 0)280421E!03 0)955515E!04 0)392572E!04 0)1

0)108623E#01 0)766872E#02 !0)697771E!02 0)3000E#00 0)414718E!02 0)953614E!03 0)323402E!03 0)132667E!03 0)6

0)114845E#01 0)106931E#03 !0)147336E!01 0)4000E#00 0)102792E!01 0)228472E!02 0)769644E!03 0)315051E!03 1.8

(c) Frequency ratios of free vibration in the third non-linear mode, curvatures and modal participation of a CC beam at various amplitudes obtained
by the present model (second formulation)

e
1
A a

3
A e

5
e
7

e
9

e
11

0)100250E#01 0)121086E#02 !0)382003E!04 0)05 0)181396E!04 0)435668E!05 0)149263E!05 0)643024E!06 0)0009

0)130924E#01 0)170607E#03 !0)427742E!01 0)60 0)221210E!01 0)640552E!02 0)241027E!02 0)108201E!02 0)95

0)140323E#01 0)207296E#03 !0)603100E!01 0)70 0)318049E!01 0)963465E!02 0)372022E!02 0)169202E!02 1)4

0)150397E#01 0)246532E#03 !0)797662E!01 0)80 0)428455E!01 0)135501E!01 0)537010E!02 0)247661E!02 1)8

se
i
: contribution of the ith CC beam function to the third non-linear mode calculated via the "rst approximation.

ta
3
: assigned value of the third CC beam function.

Aa
3

and e
1

as de"ned in Table 1(c).
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TABLE 4

Analysis of the e+ect of various truncations of the series (39) on the estimation of the ,rst CC
non-linear mode shape

Series One term Two terms 3 terms 4 terms Five terms

w*
.!9@)

0)43 0)72 1 1)6 2)74

Percentage error(unl) 0)015 0)044 0 0)033 }

Percentage error(M(0)) 2 2)13 1)9 1)95 2

Figure 8. Comparison of frequencies for second non-linear CC beam mode shape. Key as for Figure 1.

Figure 9. Comparison of values of curvature at x*"0 of the second non-linear mode shape of a CC beam. Key
as for Figure 1.
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Figure 10. Comparison of frequencies for third non-linear CC beam mode shape. Key as for Figure 1.

Figure 11. Comparison of values of curvature at x*"0 of the third non-linear mode shape of a CC beam. Key
as for Figure 1.
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in which w
i
is the ith mode of the beam considered. Adding the forcing term MF(t)N to the

right side of equation (13) leads to

[M]MqK N#[K]MqN#2[B(MqN)]MqN"MF(t)N. (43)

If only one mode is assumed, equation (43) reduces to

m
11

qK
1
#k

11
q
1
#2q3

1
b
1111

"F
1
(t), (44)

in which m
11

, k
11

and b
1111

are the mass, the rigidity and the non-linearity terms
corresponding to the "rst mode respectively.

Assuming harmonic response q
1
(t)"a

1
cos (ut), (45)



TABLE 5

(a) Free vibration in the ,rst non-linear mode of a CSS beam obtained numerically from solution of the non-linear algebraic equations

u*n1/u1 d2w/dx2 (0) a
1

a
2

a
3

a
4

a
5

a
6

1,002087 0)154398E#01 0)5000E!01 0)1225117E!04 0)2312528E!05 0)6741729E!06 0)2509223E!06 0)1098593E!06

1,258408 0)216928E#02 0)6000E#00 0)1639346E!01 0)3623392E!02 0)1136069E!02 0)4405307E!03 0)1979033E!03

1,337087 0)264171E#02 0)7000E#00 0)2412754E!01 0)5563156E!02 0)1782364E!02 0)6999476E!03 0)3169929E!03

1,421447 0)315288E#02 0)8000E#00 0)3325070E!01 0)7997489E!02 0)2620889E!02 0)1043251E!02 0)4766001E!03

1,896606 0)626531E#02 0)1300E#01 0)9409120E!01 0)2725013E!01 0)1000441E!01 0)4283471E!02 0)2054763E!02

1,998349 0)698855E#02 0)1400E#01 0)108296E#00 0)3232574E!01 0)1211944E!01 0)5264907E!02 0)2551353E!02

2,101522 0)774096E#02 0)1500E#01 0)122922E#00 0)3772766E!01 0)1443140E!01 0)6359111E!02 0)3112962E!02
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(b) Non-linear free vibration in CSS beam showing modal participation with three symmetric modes and three anti-symmetric modes (,rst formulation)

% error

w (centre)/R u*/u1* Curvature (x"0) a
1
s e

2
t e

3
t e

4
t e

5
t e

6
t d2=/dx2(0)

0)26132964E#00 0)10020880E#01 0)15439921E#01 0)500E!01 0)12282396E!04 0)23143790E!05 0)67427548E!06 0)25087025E!06 0)1098107E!06 0)00024

0)31077075E#01 0)12582715E#01 0)22410445E#02 0)600E#00 0)22650005E!01 0)40534567E!02 0)11704228E!02 0)43434081E!03 0)1899348E!03 3)7

0)36129913E#01 0)13374585E#01 0)27890296E#02 0)700E#00 0)36868148E!01 0)64686236E!02 0)18616527E!02 0)69020173E!03 0)3017147E!03 6)33

0)41118559E#01 0)14237415E#01 0)34258094E#02 0)800E#00 0)56671151E!01 0)97112937E!02 0)27842074E!02 0)10311079E!02 0)4505543E!03 9)97

(c) Non-linear free vibration in CSS beam showing modal participation with three symmetric modes and three anti-symmetric modes (second formulation)

0)26132967E#00 0)10020880E#01 0)15439890E#01 0)500E!01 0)12253721E!04 0)23130371E!05 0)67433109E!06 0)25097817E!06 0)1098812E!06 0)00004

0)41321387E#01 0)14213227E#01 0)31727052E#02 0)800E#00 0)34078831E!01 0)82397057E!02 0)27086732E!02 0)10802728E!02 0)4941361E!03 1)16

0)66413343E#01 0)18962301E#01 0)63549443E#02 0)130E#01 0)96940350E!01 0)28338974E!01 0)10481299E!01 0)45113644E!02 0)2172172E!02 2)97

0)71383167E#01 0)19979340E#01 0)70971429E#02 0)140E#01 0)11159476E#00 0)33630323E!01 0)12709629E!01 0)55537658E!02 0)2702730E!02 3)3

0)76341938E#01 0)21010745E#01 0)78695934E#02 0)150E#01 0)12666906E#00 0)39253258E!01 0)15142641E!01 0)67153395E!02 0)3302817E!02 3)62

a
1
: assigned value of the "rst CSS beam function.

e
i
: contribution of the ith CSS beam function to the "rst non-linear mode calculated via the "rst approximation.
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Figure 12. Comparison of frequencies for "rst non-linear CSS beam mode shape. Key as for Figure 1.

Figure 13. Comparison of values of curvature at x*"0 of the "rst non-linear mode shape of a CSS beam. Key
as for Figure 1.
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substituting equation (45) into equation (44) and applying the harmonic balance method
produces

(k
11
!u2m

11
)a

1
#3

2
a3
1
b
1111

"F
1
. (46)

Using the non-dimensional parameters m*
11

, k*
11

, u* and b*
1111

de"ned in equations (17}20)
leads to

(u*/u*
L
)2"1#3

2
b*
1111

a2
1
/k*

11
!F*

1
/a

1
. (47)

The dimensionless generalized forces F*c and F*d corresponding to the concentrated force
at x

0
and the uniformity distributed force on the whole beam span are given in reference [4]

as

F*c
i
"

¸3Fc

EIH
w*
i
(x

0
); F*d

i
"

¸4Fd

EIH P
1

0

w*
i
(x*) dx*. (48, 49)
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In reference [4], to facilitate comparisons with previously published numerical results, the
de#ection function was written in the form

=(x, t)"RAw(x)q(t). (50)

in which the amplitude A is given in the one mode case by

A"(12)1@2a
1
w*
1
(1/2). (51)

R is the beam radius of gyration de"ned as R"JI/S. This allows equation (47) to be
written as

(u*/u*
1
)2"1#

b*
1111
8k*

11

A2/(w*
1
(1/2))2!F/A, (52)

in which F is de"ned in the case of a distributed or a concentrated harmonic force,
respectively, by

Fd"Fd
¸4

k*
11

EIR
w*
1

(1/2)P
L

0

w*
i
(x*) dx*, Fc"Fc

¸3

k*
11

EIR
w*
1
(1/2)w*

i
(x

0
). (53, 54)

The single mode approach consists of neglecting all the co-ordinates except the single
&&resonant'' co-ordinate. This approach is very often used because it introduces a great
simpli"cation in the theory and the error that it introduces in the non-linear frequency
remains small [4]. However, it was demonstrated in reference [5] that this simpli"cation
gives erroneous results for the estimation of non-linear bending stresses, and consequently
for the estimated fatigue life of the beam, which is a!ected by the signi"cant contributions of
the higher modes.

4.2. A NEW SIMPLIFIED MULTI-MODE APPROACH

In spite of the simplicity of the single-mode approach and its ability to predict quite
accurately the non-linear frequency response curve in the neighbourhood of the resonance
considered, it remains insu$cient because it does not give any information about the
amplitude dependence of the response de#ection shape, with its practically important e!ect
on the strain and stress distributions, which are quantities of crucial importance with
respect to structural safety and fatigue life prediction. In order to remedy this insu$ciency,
a multi-mode approach to the steady state periodic non-linear forced response was
developed in reference [5], with the objective of predicting the non-linear frequency
response function of the beam, not only at its maximum de#ection point, i.e., the beam
centre when considering the "rst resonance, but for the whole span of the beam. Numerical
results have been obtained for various values and types of excitation force (concentrated
and distributed) via the solution in each case of a set of non-linear algebraic equations. The
purpose of the present section is to develop a new simpli"ed approach allowing explicit
calculation of the non-linear steady state periodic forced response of beams.
Reconsider now equation (43):

([K*]!u*2[M*])MAN#3
2
[B*(A)]MAN"MF*(t)N. (55)
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This equation appears as a generalization to the non-linear case of the classical linear forced
response problem which is very well known in modal analysis theory [18], i.e.,

([K*]!u*2[M*]) MAN"MF*(t)N (56)

to which the correcting term 3
2
[B*(A)]MAN, corresponding to the non-linear geometrical

rigidity, is added. If the excitation is harmonic, i.e., MF*(t)N"MF*N sinut, the linear response
calculated from equation (56) is also harmonic. As in the beam case considered here, [K]
and [M] are diagonal, the response is given by the function W*(x, t) as

=*(x, t)"+
i

a
i
w*
i
(x)"+

i

F*
i

(k*
ii
!u*2m*

ii
)
w*
i
(x) sinut. (57)

In the non-linear case, previous experimental and theoretical works have shown that
harmonic distortion of the response occurs at large vibration amplitudes, even when the
excitation is harmonic with a spatial distribution of the "rst and higher harmonics, so that
the response may be written [1] as

="MA
k
NTMWN sin kut, (58)

where MA
k
NT"[ak

1
ak
2
,2, ak

n
] is the matrix of coe$cients corresponding to the kth

harmonic, MWNT"[w
1

w
2
,2, w

n
] is the basic spatial function matrix, k is the number of

harmonics taken into account, and the usual summation convention on the repeated index
k is used. Examination of this e!ect would have exceeded the scope of the present work,
restricted to the "rst harmonic distribution amplitude dependence. So, the response has
been assumed to have the form

=(x, t)"a
i
w

i
(x) sinut. (59)

Replacing the last equation in (13) and applying the harmonic balance method leads to the
following system of non-linear algebraic equations:

([K*]!u*2[M*]) MAN#3
2

[B*(A)]MAN"MF*N (60)

which can be written using tensor notation as

a
i
k*
ir
!u*2a

i
m*

ir
#3

2
a
i
a
j
a
k
b*
ijkr

"F*
i
, i"1,2, n. (61)

The last system is similar to that obtained in equation (23) in the free case with two
di!erences: (1) in the free case, i varies from 2}n and the "rst equation is omitted, because the
"rst contribution a

1
was assigned; (2) all of the n equations have a rightside representing the

forcing term F*
i
. A simpli"ed method for solving this system is presented in the next two

subsections.

4.2.1. First formulation

Consider now the non-linear system (61) and apply the "rst formulation which, as in the
case of large-amplitude free vibrations, consists in neglecting in the expression a

i
a
j
a
k
b
ijkr

of
equation (61) both "rst and second order terms with respect to e

i
, i.e., terms of the type

a2
1
e
i
b
11ir

or of the type a
1
e
i
e
j
b
1ijr

. In the neighbourhood of the "rst resonance the above
equation can be written as

(k*
ii
!u*2m*

ii
)a

i
#3

2
a3
1
b*
irrr

"F*
i
, i"1,2, n. (62)



NON-LINEAR DYNAMIC RESPONSE OF BEAMS 291
This system permits one to obtain explicitly the modal contributions a
2
,2, a

n
corresponding to a given value of the contribution a

1
as

a
i
"(F*

i
!3

2
a3
1
b*
i111

)/(k*
ii
!u*2m*

ii
) (i"2,,2 , n). (63)

The "rst harmonic component of the non-linear steady state forced periodic response=* is
then given by

=*u*
(x, t)"C

F*
1
!3

2
a3
1
b*
1111

(k*
11
!u*2m*

11
)
w*
1
(x)#

F*
3
!3

2
a3
1
b*
3111

(k*
33
!u*2m*

33
)
w*

3
(x)#2

#

F*
11

!3
2

a3
1
b*
11111

(k*
1111

!u*2m*
1111

)
w*

11
(x)D sinu. (64)

Equation (64) is an extension to the non-linear case of equation (57) obtained in linear
modal analysis, in which the beam total response=*u* (x, t) appears as the sum of the linear
response=*u*1

(x, t) given by equation (57) and a term due to the non-linearity=*u*n1
(x, t)

given by

=*u*n1
(x, t)"!3

2
a3
1

[(b*
1111

/(k*
11
!u*2m*

11
)) w*

1
(x)#

b*
3111

(k*
33

!u*2m*
33

)
w*
3
(x)

#2#(b*
11111

/(k*
1111

!u*2m*
1111

)) w*
11

(x)] sinut, (65)

where the cubic non-linear term a3
1

may be obtained from the excitation frequency u* and
the excitation force F*

1
via equation (47) obtained from the single-mode approach.

4.3. SECOND FORMULATION

As in the free vibration case, the explicit formulae established via the "rst formulation
developed in the above subsection yield accurate results for relatively small amplitudes of
vibration and excitation forces. For higher amplitudes, a second formulation is considered
in which only second order terms of the type e

i
e
j
a
1
b
ij1r

are neglected in equation (61) and
rewritten here as

!u*2a
i
m*

ir
#a

i
k*
ir
#3

2
a
i
a
j
a
k
b*
ijkr

"F
i
, r"1,2 , n. (66)

Separating in the non-linear expression a
i
a
j
a
k
b*
ijkr

terms proportional to a3
1
, terms

proportional to a2
1
e
i
, and neglecting terms proportional to a

1
e
i
e
j
leads to

a
i
a
j
a
k
b*
ijkr

"a3
1
b*
111r

#a2
1
e
i
b*
11ir

(67)

and after substituting and rearranging, equation (67) can be written in matrix form as

([K*
RI

]!u*2[M*
RI

])MA
RI

N#3
2
[a*

I
]MA

RI
N"MF

i
!3

2
a3
1
b*
i111

N (68)

in which [K*
RI

]"[k*
ij
] and [M*

RI
]"[m*

ij
] are reduced rigidity and mass matrices associated

with the "rst non-linear mode, obtained by varying i and j in the set (3, 5,2, 11), [a*
I
] is

a 5]5 square matrix, depending on a
1
, whose general term a*

ij
is equal to a2

1
b*
ij11

and
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MF
i
!3

2
a3
1
b*
i111

N is a column vector representing the right side of the linear system (68) in
which the reduced unknown vector is MA

RI
NT"[e

3
e
5
,2, e

11
]. The modal contributions

e
3
, e

5
,2, e

11
can be obtained quite easily by solving the linear system (68) of "ve equations

and "ve unknowns.
Based on this formulation, in the neighbourhood of the rth mode shape, equation (24)

becomes

([K*
Rr

]!u*2[M*
Rr

])MA
Rr

N#3
2
[a*

R
]MA

Rr
N"MF

i
!3

2
a3
r
b*
irrr

N, (69)

with

[a*
r
]"[a2

r
b*
ijrr

]. (70)

The modal contributions e
1
,2, e

n
for iOj can be obtained quite easily by solving the

matrix problem.
Figure 14. Comparison between resonance curves for forced vibration of a CC beam under a harmonic
concentrated force Fc"200 at the centre of the beam obtained by (a) "rst (} } } ), second (**) approximations or
values from reference [5] (*j*) and (b) by (1) exact solution (j j ), (2) "rst formulation (6D) and (3) second
formulation (6D) (3).
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4.4. COMPARISON OF THE RESULTS OBTAINED BY THE FIRST AND SECOND FORMULATIONS

WITH PREVIOUS RESULTS

The validation of the two formulations developed in the previous section has been made
via two types of comparisons: (1) The non-linear response curves obtained by the present
formulations have been compared in Figures 14}17 to that obtained previously for three
values of the concentrated excitation force (corresponding to F c"200, 500 and 1000) and
one value of the distributed excitation force and a range of non-dimensional vibration
amplitudes up to 1)4 times the beam thickness. All curves show a very good agreement with
a slight shift towards the right of the curves obtained by the "rst formulation for relatively
Figure 16. Comparison between resonance curves for forced vibration of a CC beam under a harmonic
distributed force Fd"1000 obtained by "rst (1) or second (2) approximations or exact solution (3) taken from
reference [5].

Figure 15. Comparison between resonance curves for forced vibration of a CC beam under a harmonic
concentrated force Fc"500 at the centre of the beam obtained by "rst (} } } }), second (**) approximations or
exact solution from reference [5] (j j ).



Figure 17. Comparison between resonance curves for forced vibration of a CC beam under a harmonic
distributed force F"1 obtained by "rst (1) or second (2) approximations or exact solution (3) taken from reference
[17].
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small amplitudes (corresponding to a harder non-linear behaviour) compared with that
obtained by the second formulation. For higher amplitudes, the shift is much more
pronounced (Fig. 14(b)). (2) The second way of validating the results was based on the
comparison of the percentages of participation obtained here with those given in reference
[5] and obtained from the numerical solution of the non-linear algebraic system in each
case. Also, comparisons have been made of the curvatures obtained at x*"0 via the
di!erent approaches. It was necessary to do so because the main feature of the multi-mode
approach is its ability to give information concerning the e!ect of non-linearity on the
bending stress patterns. The moments and the percentage of participation are summarized
in Tables 6}8. It can be seen in these tables that, for the range of excitation forces and
amplitudes considered, the three approaches agree quite well, and that the error induced by
the "rst formulation on the percentage contributions of higher modes becomes relatively
signi"cant for amplitudes of vibration above 0)8 times the beam thickness while the second
formulation remains good for amplitudes up to 1)5 times the beam thickness.

5. GENERAL CONCLUSIONS

Considering the free vibration case, a simple approximate analytical expression for the
higher mode contribution coe$cients to the "rst three non-linear mode shapes of CC beams
and to the "rst non-linear mode shape of CSS beam have been obtained, which coincides
with the numerical solution of the non-linear algebraic system previously developed, for
amplitudes up to about 0)7 of the beam thickness. For displacement amplitudes greater
than the thickness, an improved formulation is presented, which leads to the exact
numerical solution, via the inversion of a 5]5 matrix, which makes obtaining the
non-linear mode shapes and resonance frequencies of beams very easy, for a wide range of
vibration amplitudes. A similar approach has been applied to the forced response case,
enabling explicit determination of the non-linear multi-mode steady state periodic forced
response for "nite but relatively small vibration amplitudes. The form of the explicit



TABLE 6

Frequency ratios of non-linear forced vibration of a CC beam under a harmonic concentrated force at the centre of the beam (FORCC"200) showing modal
participation with six symmetric modes and comparison with the single mode analysis obtained from reference [5]

= u*/u1*
= (centre)/R u*/u1* a

1
(%) a

3
(%) a

5
(%) a

7
(%) a

9
(%) a

11
(%) (centre)/R (single mode)

1)005353 0)1000000 96)39219 !2)874071 0)5100822 !0)1407441 0)569181E!01 !0)2593153E!01 1)0 0)1928962

1)500927 0)6450033 97)75072 !1)740592 0)3633680 !0)8877219E!01 0)3985901E!01 !0)1668785E!01 1)5 0)6552246

2)000284 0)8177417 98)57255 !1)020286 0)3050060 !0)5823117E!01 0)3245784E!01 !0)1146226E!01 2)0 0)8221617

2)500852 0)9343069 99)19306 !0)4468246 0)2876531 !0)3529215E!01 0)2944710E!01 !0)7718413E!02 2)5 0)9369499

3)000302 1)031101 99)58905 0)678134E!01 0)2944021 !0)1518428E!01 0)2897176E!01 !0)4573171E!02 3)0 1)033773

3)500347 1)120242 99)09354 0)5550099 0)3156096 0)4179276E!02 0)3003896E!01 !0)1619004E!02 3)5 1)123735

4)000838 1)206412 98)56756 1)025542 0)3495403 0)2357336E!01 0)3249186E!01 0)1287302E!02 4)0 1)211345

4)500776 1)291557 98)03852 1)483981 0)3935817 0)4354710E!01 0)3610522E!01 0)4260943E!02 4)5 1)298619

5)000225 1)376679 97)51002 1)931526 0)4459033 0)6442957E!01 0)4074151E!01 0)7377538E!02 5)0 1)386487

!5)000281 1)514947 !96)66279 !2)891753 !0)2879580 !0)1186933 !0)2120875E!01 !0)1759812E!01 !5)0 1)524941
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TABLE 6
Continued

= u*/u1*
=(centre)/R u*/u1* a

1
(%) a

3
(%) a

5
(%) a

7
(%) a

9
(%) a

11
(%) (centre)/R (single mode)

!4)500031 1)453275 !97)05431 !2)601457 !0)2101410 !0)1045837 !0)1381919E!01 !0)1568881E!01 !4)5 1)460924

!4)000338 1)398263 !97)41199 !2)339205 !0)1347016 !0)9306238E!01 !0)6814156E!02 !0)1422664E!01 !4)0 1)404005

!3)500208 1)351558 !97)72275 !2)118571 !0)608941E!01 0)8447389E!01 !0)4549625E!04 !0)1326006E!01 !3)5 1)355963

!3)000673 1)315708 !97)92974 !1)958816 0)125113E!01 !0)7936939E!01 0)6690977E!02 !0)1287480E!01 !3)0 1)319287

!2)500924 1)294311 !97)91839 !1)887597 0)883801E!01 !0)7863952E!01 0)1377245E!01 !0)1322210E!01 !2)5 1)297718

!2)000244 1)293513 !97)74815 !1)958049 0)1729352 !0)8425936E!01 0)2195301E!01 !0)1464926E!01 !2)0 1)297573

!1)499999 1)325402 !97)29274 !2)275527 0)2805047 !0)1004443 0)3287201E!01 !0)1791381E!01 !1)5 1)331533

!1)000629 1)420321 !96)20075 !3)130726 0)4529746 !0)1391726 0)5119060E!01 !0)2518677E!01 !1)0 1)432725

!0)8007563 1)494452 !95)35081 !3)817971 0)5680137 !0)1688901 0)6365799E!01 !0)3065426E!01 !0)8 1)512764

!0)6005462 1)612104 !93)94598 !4)968149 0)7461758 !0)2171378 0)8308178E!01 !0)3946856E!01 !0)6 1)641878

!0)4007967 1)819032 !91)26941 !7)185005 1)066063 !0)3059553 0)1179550 !0)5561330E!01 !0)4 1)877914

!0)3009815 1)994473 !88)78509 !9)264190 1)347756 !0)3846030 0)1485001 !0)6986182E!01 !0)3 2)088828

!0)2503182 2)119254 !86)89849 !10)85583 1)553040 !0)4418040 0)1706226 !0)8020222E!01 !0)25 2)243612
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TABLE 7

Non-linear forced vibration of a CC beam subjected to harmonic concentrated force F"1)0077 (FORCC"200) showing modal participation with six symmetric modes
(,rst formulation)

u*/u1*
Present
model A"=

max
/R

d2=/dx2 (0) =(centre)/R a
1
(%) a

3
(%) a

5
(%) a

7
(%) a

9
(%) a

11
(%) (single mode) (single mode)

0)71908274E#01 0)10325769E#01 0)9646231E#02 !0)2824562E#01 0)4983606E#00 !0)1355028E#00 0)5476799E!01 !0)2449011E!01 0)193387 1.00017

0)11458715E#02 0)15323330E#01 0)9775797E#02 !0)1740115E#01 0)3614371E#00 !0)8586619E#01 0)3878778E!01 !0)1581464E!01 0)656072 1.50190

0)15898021E#02 0)20264197E#01 0)9854593E#02 !0)1044725E#01 0)3096403E#00 !0)5675754E!01 0)3202125E!01 !0)1092377E!01 0)822252 2.00034

0)20630068E#02 0)25206678E#01 0)9916643E#02 !0)4651104E#00 0)2971029E#00 !0)3464866E!01 0)2931494E!01 !0)7391263E!02 0)937378 2.50208

0)25658820E#02 0)30077824E#01 0)9955874E#02 0)8427740E!01 0)3082440E#00 !0)1533219E!01 0)2894958E!01 !0)4454569E!02 1)033868 3.00051

0)31120658E#02 0)34933895E#01 0)9898501E#02 0)6461930E#00 0)3338247E#00 0)3315436E!02 0)2993354E!01 !0)1720051E!02 1)124133 3.50225

0)37015231E#02 0)39702052E#01 0)9834215E#02 0)1230780E#01 0)3723589E#00 0)2172130E!01 0)3209814E!01 0)8890910E!03 1)211465 4.00069

0)43495615E#02 0)44435839E#01 0)9764004E#02 0)1858389E#01 0)4221708E#00 0)4065583E!01 0)3523323E!01 0)3504226E!02 1)299043 4.50242

0)50554703E#02 0)49063124E#01 0)9688493E#02 0)2528466E#01 0)4811537E#00 0)6015659E!01 0)3914221E!01 0)6145348E!02 1)386639 5.00086

!0)52925104E#02 !0)48331712E#01 !0)9576487E#02 !0)3804597E#01 !0)2822740E#00 !0)1149053E#00 !0)1736788E!01 !0)1598328E!01 1)52505 !5.00086
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TABLE 7
Continued

u*/u1*
Present
model A"=

max
/R

d2=/dx2 (0) =(centre)/R a
1
(%) a

3
(%) a

5
(%) a

7
(%) a

9
(%) a

11
(%) (single mode) (single mode)

!0)45821852E#02 !0)43713363E#01 !0)9639898E#02 !0)3272698E#01 !0)2007412E#00 !0)1020953E#00 !0)1094803E!01 !0)1453753E!01 1)46121 !4.50242

!0)39302575E#02 !0)38987447E#01 !0)9694845E#02 !0)2819349E#01 !0)1226139E#00 !0)9150286E!01 !0)4665231E!02 !0)1341368E!01 1)40407 !4.00069

!0)33374590E#02 !0)34226053E#01 !0)9739643E#02 !0)2457706E#01 !0)4799523E!01 !0)8366226E!01 0)1505038E!02 !0)1269422E!01 1)35615 !3.50225

!0)27884134E#02 !0)29375776E#01 !0)9768063E#02 !0)2194200E#01 0)2581741E!01 !0)7904012E!01 0)7835158E!02 !0)1246982E!01 1)31931 !3.00051

!0)22831753E#02 !0)24509413E#01 !0)9773862E#02 !0)2054195E#01 0)1009626E#00 !0)7870679E!01 0)1458873E!01 !0)1292117E!01 1)29776 !2.50208

!0)18080652E#02 !0)19570791E#01 !0)9761040E#02 !0)2082723E#01 0)1851307E#00 !0)8472377E!01 0)2259752E!01 !0)1441994E!01 1)29756 !2.00034

!0)13627198E#02 !0)14632788E#01 !0)9717159E#02 !0)2382957E#01 0)2927606E#00 !0)1014852E#00 0)3345819E!01 !0)1774451E!01 1)33130 !1.50190

!0)93506799E#01 !0)96369725E#00 !0)9603598E#02 !0)3272609E#01 0)4714415E#00 !0)1423397E#00 0)5234670E!01 !0)2528117E!01 1)43267 !1.00017

!0)77086177E#01 !0)76588091E#00 !0)9513621E#02 !0)4001458E#01 0)5922172E#00 !0)1737985E#00 0)6534287E!01 !0)3096589E!01 1)51171 !0.80211

!0)60653310E#01 !0)56438090E#00 !0)9358551E#02 !0)5273890E#01 0)7870285E#00 !0)2267201E#00 0)8638899E!01 !0)4046070E!01 1)64123 !0.60076

!0)44850386E#01 !0)36551585E#00 !0)9053749E#02 !0)7806086E#01 0)1146617E#01 !0)3264054E#00 0)1251436E#00 !0)5825178E!01 1)87342 !0.40270

!0)36987735E#01 !0)26216701E#00 !0)8741314E#02 !0)1043343E#02 0)1493186E#01 !0)4226705E#00 0)1621996E#00 !0)7536718E!01 2)08780 !0.30038

!0)33355182E#01 !0)21171572E#00 !0)8500580E#02 !0)1247832E#02 0)1746378E#01 !0)4926781E#00 0)1890384E#00 !0)8777989E!01 2)24050 !0.2508
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TABLE 8

Non-linear forced vibration in a CC beam subjected to a harmonic concentrated force F"1)0077 (FORCC"200) showing modal participation with six symmetric modes
(second formulation)

u*/u1*
Present
model A"=

max
/R

d2=/dx2(0) =(centre)/R a
1
(%) a

3
(%) a

5
(%) a

7
(%) a

9
(%) a

11
(%) (single mode) (single mode)

0)71959697E#01 0)10322228E#01 0)9649959E#02 !0)2791101E#01 0)4939064E#00 !0)1356519E#00 0)5443681E!01 !0)2531086E!01 0)193387 1.00017

0)11476029E#02 0)15315735E#01 0)9781268E#02 !0)1691889E#01 0)3549499E#00 !0)8581266E!01 0)3841341E!01 !0)1624833E!01 0)656072 1.50190

0)15923274E#02 0)20252974E#01 0)9860762E#02 !0)9922829E#00 0)3009628E#00 !0)5646319E!01 0)3161973E!01 !0)1104979E!01 0)822252 2.00034

0)20644987E#02 0)25195173E#01 0)9921761E#02 !0)4262719E#00 0)2859637E#00 !0)3401156E!01 0)2893975E!01 !0)7197631E!02 0)937378 2.50208

0)25623354E#02 0)30073875E#01 0)9957588E#02 0)8308874E!01 0)2942265E#00 !0)1421633E!01 0)2868522E!01 !0)3896686E!02 1)033868 3.00051

0)30963046E#02 0)34951635E#01 0)9907766E#02 0)5698316E#00 0)3167595E#00 0)5067776E!02 0)2993521E!01 !0)7365193E!03 1)124133 3.50225

0)36625147E#02 0)39763158E#01 0)9855149E#02 0)1037711E#01 0)3515577E#00 0)2432946E!01 0)3252382E!01 0)2379863E!02 1)211465 4.00069

0)42709426E#02 0)44572097E#01 0)9801924E#02 0)1497872E#01 0)3966158E#00 0)4438181E!01 0)3627768E!01 0)5606906E!02 1)299043 4.50242

0)49154530E#02 0)49316333E#01 0)9749015E#02 0)1945017E#01 0)4495688E#00 0)6526791E!01 0)4101890E!01 0)8970893E!02 1)386639 5.00086

!0)5096230E#02 !0)48760427E#01 !0)9665415E#02 !0)2900570E#01 !0)2858806E#00 !0)1190128E#00 !0)2115957E!01 !0)1922716E!01 1)52505 !5.00086
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TABLE 8
Continued

u*/u1*
Present
model A"=

max
/R

d2=/dx2(0) =(centre)/R a
1
(%) a

3
(%) a

5
(%) a

7
(%) a

9
(%) a

11
(%) (single mode) (single mode)

!0)4457298E#02 !0)43995533E#01 !0)9704540E#02 !0)2610598E#01 !0)2082039E#00 !0)1049036E#00 !0)1379716E!01 !0)1709219E!01 1)46121 !4.50242

!0)3854282E#02 !0)39166561E#01 !0)9740520E#02 !0)2347002E#01 !0)1323229E#00 !0)9329576E!01 !0)6769168E!02 !0)1540276E!01 1)40407 !4.00069

!0)3293156E#02 !0)34336236E#01 !0)9771482E#02 !0)2127556E#01 !0)5862517E!01 !0)8471841E!01 !0)3374901E!04 !0)1423939E!01 1)35615 !3.50225

!0)2763910E#02 !0)29441023E#01 !0)9791601E#02 !0)1968679E#01 0)1530017E!01 !0)7960892E!01 0)6720251E!02 !0)1367953E!01 1)31931 !3.00051

!0)2270275E#02 !0)24546817E#01 !0)9790049E#02 !0)1901519E#01 0)9133406E!01 !0)7897644E!01 0)1377822E!01 !0)1389769E!01 1)29776 !2.50208

!0)1801749E#02 !0)19591204E#01 !0)9772055E#02 !0)1980395E#01 0)1769237E#00 !0)8485662E!01 0)2200302E!01 !0)1526875E!01 1)29756 !2.00034

!0)1359994E#02 !0)14643114E#01 !0)9724510E#02 !0)2315392E#01 0)2862921E#00 !0)1016081E#00 0)3301187E!01 !0)1859429E!01 1)33130 !1.50190

!0)9343334E#01 !0)96412772E#00 !0)9608090E#02 !0)3231332E#01 0)4668592E#00 !0)1425601E#00 0)5199319E!01 !0)2635034E!01 1)43267 !1.00017

!0)7706388E#01 !0)76615261E#00 !0)9517090E#02 !0)3969389E#01 0)5883584E#00 !0)1740944E#00 0)6500561E!01 !0)3224902E!01 1)51171 !0.80211

!0)6067137E#01 !0)56452862E#00 !0)9360985E#02 !0)5250993E#01 0)7838353E#00 !0)2271320E#00 0)8604513E!01 !0)4213569E!01 1)64123 !0.60076

!0)4489865E#01 !0)36557545E#00 !0)9055118E#02 !0)7792436E#01 0)1143889E#01 !0)3270146E#00 0)1247422E#00 !0)6073378E!01 1)87342 !0.40270

!0)3704903E#01 !0)26219347E#00 !0)8742071E#02 !0)1042490E#02 0)1490502E#01 !0)4234565E#00 0)1617200E#00 !0)7870883E!01 2)08780 !0.30038

!0)3342273E#01 !0)21172895E#00 !0)8501005E#02 !0)1247245E#02 0)1743604E#01 !0)4935874E#00 0)1884950E#00 !0)9180378E!01 2)24050 !0.2508
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NON-LINEAR DYNAMIC RESPONSE OF BEAMS 301
case which may appear as one more step towards the development of the &&non-linear modal
analysis theory'' [8]. For very high amplitudes, the non-linear multi-mode steady state
periodic forced response is still very easily obtained via inversion of a 5]5 square matrix
and the solution coincides exactly with the numerical solution previously obtained from the
non-linear algebraic system.
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APPENDIX A: BEAM FUNCTIONS

A.1. CLAMPED}CLAMPED BEAMS

The chosen basic functions w
i
were the linear CC beam functions

w
i
(x)"

ch (v
i
x/¸)!cos(v

i
x/¸)

ch v
i
!cos v

i

!

sh(v
i
x/¸)!sin (v

i
x/¸)

sh v
i
!sin v

i

,

where v
i
are the eigenvalue parameters for CC beam.

The values of the parameters v
i

have been computed by solving numerically the
transcendental equation ch v

i
cos v

i
"1 using Newton's method and are given in Table A1.

The functions w
i
have been normalized in such a manner that

m*
ij
"P

1

0

w*
i
(x*)w*

j
(x*) dx*"d

ij
.

TABLE A1

Symmetric (a) and antisymmetric (b) eigenvalue parameters v
i

for a CC beam

(a) (b)

1 4)73004075 2 7)85320462

3 10)99560784 4 14)13716549

5 17)27875966 6 20)42035225

7 23)56194490 8 26)70353756

9 29)84513021 10 32)98672286

11 36)12831552 12 39)26990817
The tensors k*
ij

and b*
ijkl

are de"ned by

k*
ij
"P

1

0
A
L2=*

i
Lx*2 BA

L2=*
j

Lx*2 Bdx*"RIG (i, j),

b*
ijkl

"a P
1

0
A
L=*

i
Lx* BA

L=*
j

Lx* Bdx* P
1

0
A
L=*

k
Lx* BA

L=*
1

Lx* Bdx*"aRAG (i, j) RAG (k, l ),

where a"SH2/4I is the non-dimensional parameter characterizing the beam cross-section.
For a CC beam of rectangular cross-section, corresponding to a value of a"3, the matrixes
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RIG (i, j ) and RAG(i, j ) are given numerically (for i, j"1, 3, 5, 7, 9, 11) by

[RIG(i, j )]"

500)56
14617)63

89135)40
308208)45

793406)25
1691832)35

with all non-diagonal terms of [RIG] equaling zero, and

[RAG(i, j )"

12)30 !9)73 !7)61 !6)10 !5)06 !4)25
!9)73 98)90 !24)34 !22)98 !20)85 !18)47
!7)61 !24)34 263)99 !38)02 !37)95 !35)71
!6)10 !22)98 !38)02 508)04 !51)22 !51)08
!5)06 !20)85 !37)95 !51)22 831)05 !62)65
!4)25 !18)47 !35)71 !51)08 !62)65 1236)08

.

A.2. CLAMPED}SIMPLY SUPPORTED BEAMS

The chosen basic functions for CSS beams are CSS beam linear mode shapes. The
constants v

i
for a CSS beam are obtained by solving the equation tg(v

i
)-th(v

i
)"0 and are

given in Table A2.
TABLE A2

Odd (a) and even (b) eigenvalue parameters v
i

for a CSS beam

(a) (b)

1 3)926602312 2 7)068582745

3 10)210176122 4 13)351768777

5 16)493361431 6 19)634954084
The tensors m*
ij
, k*

ij
and b*

ijkl
are de"ned as in the case of a CC beam. For a CSS beam of

rectangular cross-section, corresponding to a value of a"3, the matrixes RIG (i, j) and
RAG (i, j) are given numerically (for i, j"1, 2, 3, 4, 5, 6) by

[RIG( i, j )]"

237)72
2496)48

10867)58
31780)09

74000)84
148634)47
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with all non-diagonal terms of [RIG] equaling zero, and

[RAG(i, j)"

11)51 !4)28 !3)79 !3)28 !2)85 !2)51
!4)28 42)89 !7)81 !7)64 !7)16 !6)62
!3)79 !7)81 94)03 !11)16 !11)28 !10)99
!3)28 !7)64 !11)16 164)91 !14)43 !14)78
!2)85 !7)16 !11)28 !14)43 255)53 !17)65
!2)51 !6)62 !10)99 !14)78 !17)65 365)89

.

APPENDIX B: DETAILS CORRESPONDING TO THE 1-D APPROACH

The single-mode approach, corresponding to the 1-D non-linear frequency response
function gives [5]

(u*/u*
L
)2"1#3

2
(b*

1111
/k*

11
) ((A)2/(=*

1
(1/2)2)!F*/A.

The pair of values u* and a
1

obtained from the equality A"=
max

/R"a
1
w*

1
(1/2) are then

re-injected in equation (63) to calculate the modal contributions a
i
in the neighbourhood of

the "rst mode shape.
If one looks to the expressions of non-dimensional concentrated force Fc and distributed

force Fd given in reference [5], and recalls that in the second section of this paper

Fc
i
"

Fc¸3

k*
11

EIR
w*

1
(1/2)w*

i
(x

0
), Fd

i
"

Fd¸4

k*
11

EIR
w*

1
(1/2) P

L

0

w*
i
(x*) dx*,

then one can put the non-dimensional ratio FORCD"Fc¸3/EIR and the non-dimensional
ratio FORCD"Fd¸4/EIR, then

F c
i
"(FORCC/k*

11
)w*

1
(1/2)w*

i
(x

0
), Fd

i
"(FORCD/k*

11
)w*

1
(1/2) P

1

0

w*
i
(x) dx*.

APPENDIX C: NOMENCLATURE

<
b
, <

a
, < bending, axial and total strain energy respectively

E Young's modulus
o mass per unit length
¸ length of the beam
S area of cross-section
I second moment of area of cross-section
H thickness of the beam
=(x, t) transverse displacement at point x on the beam
¹ kinetic energy
x point co-ordinate
q
i

generalized co-ordinate q
i
(t)"a

i
sin (ut)

MAN column matrix of basic functions contributions to the free or forced response
MANT"[a

1
,2, a

n
]

k
ij
, m

ij
, b

ijkl
general terms of the rigidity tensor, mass tensor and non-linearity tensor
respectively

[K], [M], [B] rigidity, mass and non-linearity matrix respectively
/*
i

the ith linear mode shape of the clamped}simply supported beam
w*
i

the ith linear mode shape of the clamped}clamped beam
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k
11

,m
11

, b
1111

rigidity, mass and non-linearity parameters corresponding to the one mode
assumed, respectively.

[a
1
e
3
,2, e

11
] column matrix of the contribution coe$cients to the "rst non-linear CC beam

mode shape
[a

2
e
4
,2 , e

12
] column matrix of the contribution coe$cients to the second non-linear CC beam

mode shape
[e

1
a
3
,2 , e

11
] column matrix of the contribution coe$cients to the third non-linear CC beam

mode shape
[a

1
e
2
,2 , e

6
] column matrix of the contribution coe$cients to the "rst non-linear CSS beam

mode shape
F(x, t) exciting force
SM range of application of the exciting force
MF(t)N column matrix of generalized forces F

i
(t)

F
1
(t) generalized force corresponding to the one mode assumed

k*
ij
, m*

ij
, b*

ijkl
general terms of the non-dimensional rigidity tensor, mass tensor and non-linearity
tensor respectively

u, u* frequency and non-dimensional frequency parameter respectively
* star exponent indicates non-dimensional parameters
w*
nli

(x, a
i
) the ith CC beam non-linear mode shape for a given assigned value a

i
of the ith

function contribution
w*u*1

(x, t) linear term in the "rst harmonic component of the non-linear steady state forced
periodic response

w*u*nl
(x, t) the term due to non-linearity in the "rst harmonic component of the non-linear

steady state forced periodic response
w*u*(x, t) the "rst harmonic component of the non-linear steady state forced periodic

response
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